SAM Dimension Query Logic

Data Driven Join Resolution

Using Chains and Links
Date: July 17, 2002

Revised: July 30, 2002

By: Matthew G. Vranicar

Randy Herber

Joshua Gramlich

The current schema of requiring SAMDbServer code modifications and version releases to add new dimensions for user queries is costing too great an impact on the flexibility of SAM to adapt to user needs. As such, a means for allowing SAM Admin’ers and SAM Shifters to easily add dimensions without modifying the sam_db_server code base is required. This mechanism will store the dimension join details currently found in the DimDriver files into the Oracle database tables. It requires new tables and changes to existing tables to add this ability. The approach, its benefits, and the implementation details of this approach are presented in this paper.

Dimensions

The dimension table will lose three columns in this new database schema: DIM_TABLE, DIM_COLUMN, and DIM_ALIAS. These values are moved elsewhere in the new schema as noted below.

Dimension Drivers

The first new concept to introduce is that of the Dimension Drivers. The new table DIMENSION_DRIVERS will house the driver details for using a given Dimension to return facts from a certain table. This replaces the current mechanism of the two different “Driver” files used in SAM, DimDriverDatafile.py and DimDriverDatasetDef.py.

This table has a multi-part key made up of the dimension name, the fact type, and a chain number. The same dimension name can be used to retrieve different facts from two different tables, thus the need to include the fact type. Most dimension/fact combinations will have only one record in this table, and so that record will have a chain number of 1. However, the data model allows the ability to have more than one chain required to resolve a specific dimension. This will be used to replace the old method of keeping additional required dimensions in the table Dimension_Addons, as was used for the param_category/param_type queries generated for dimensions such as PYTHIA.TOPMASS. There will be two driver records for such dimensions in this model, with one linking its chain back to the table PARAM_CATEGORIES, and one linking its chain back to PARAM_TYPES.

The Answer table and columns represent the table and column names in the end resulting answer to return, or the facts to return from the query.

The Question table and columns represent the table and column names that house the user is trying to use to query the database.

There is also an additional Question Check field, which is actually used in conjunction with the approach mentioned above for housing PARAM_CATEGORIES and PARAM_TYPES. Since dimensions such as PYTHIA.TOPMASS require specific values for the param category and type, a means to include that Check in the dimension definition is needed. This will be accomplished by storing the SQL check required in the Question_Check column, e.g. “= ‘pythia’”, “= ‘topmass’”, etc. Note that this SQL check can be as complex as a nested sub-query, or as simple as the equal to checks noted above. Most current uses of this will be direct equal checks for the MC param/type/category options.

Dimension Depends

The DIMENSION_DEPENDS table houses records indicating which dimensions must be provided by a user if they specify a certain dimension in their query. For example, for performance reasons, we know that they must provide a Run Number when querying Events to ensure that the Oracle database perform an operable, efficient query. This table defines which dependencies are needed for each dimension/driver combination.

Chains and Chain Links

Chains are a tool used to describe the query join paths. A chain starts with one dimension/fact type and depicts a list of links (in the CHAIN_LINKS table) that specify the entire join path all the way back to the fact destination table.

Chain_Name – An arbitrary, unique name of the chain. This name may end up being used to differentiate the type of query you want to perform. For example, for the Child chain noted in the table of example chains below, we may allow syntax such as the following, which somehow triggers the query logic to search for all files where there is a child file that matches the noted file_name pattern.

 Child.file_name like ‘%ttbar%muon%’

Links

The Links table depicts the actual join details needed to follow the chains. It includes the following columns:

Link_Name – A unique link name, used to join from the names found in the Chains.Links column back to this Links table.

From_Table – The table on one side (the “from” side) of the link.

To_Table – The table on the other side (the “to” side) of the link.

Link_Columns – The column(s) to be used in the join. The columns are stored as either simply the column name if the same column name is used in both tables. Or, if the names are different, the column is a colon separated list of columns, with the from table colum first and the to table column second, e.g. FILE_ID:SOURCE_FILE_ID from the link from table DATA_FILES to FILE_LINEAGES.

If there are multiple columns required for the join, then the Link_Columns will contain a comma separated list of the multiple key columns. In the case when the column names are identical in both tables, the link columns will look like this example: KEY1,KEY2. In the case when the column names are different in both tables, the link columns will look like this example: TAB1_KEY1:TAB2_KEY1,TAB1_KEY2:TAB2_KEY2.

Outer joins can also be specified, simply by including a + on the approach key/column combination for the outer join.

When a query is resolved from the links, the From_Table, To_Table and Link_Columns are used

Sample data for the Links table is included in table 1 below.

	Link_Name
	From_Table
	To_Table
	Link_Columns

	Data_Tier
	Data_Tiers
	Data_Files
	Data_Tier

	Logical_Stream
	Logical_Streams
	Physical_Streams
	Logstream_Id

	Physical_Stream
	Physical_Streams
	Data_Files
	PhysStream_Id

	Child_File
	Data_Files
	File_Lineages
	File_id:Source_File_Id

	Child_Lineage
	File_Lineages
	Data_Files
	Dest_File_Id:File_Id

Sample Links Data

Table 1

In addition to gaining the ability to add dimensions, even those that include new tables in the resulting query, we gain something else with this feature. We gain the ability to easily check the join paths every time a new dimension is added. We simply walk the paths of all Links on the Chains described below and we can ensure that new table additions will indeed give proper query results when used. This is currently not the case when editing the DimDriver files. There are no checks that the python dictionary changes a SAM Admin’er makes will work properly. In fact, we have seen situations recently where errant addition of a new condition caused the query join logic to write a query without all the proper joins in place.

SAM_DB Impact Analysis

Here are the steps, including sequence, in which the changes for this work must be introduced into the SAM environment.

1.) Add the new tables DIMENSION_DRIVERS, CHAINS, LINKS, CHAIN_LINKS.

2.) Modify the table DIMENSION_DEPENDS = Add columns DIM_FACT_TYPE and CHAIN_NUMBER, and include them as part of the primary key, along with DIMENSION_NAME and REQUIRED_DIMENSION_NAME.

3.) Add the code changes to use these new structures.

4.) Drop the columns DIM_ALIAS, DIM_TABLE, DIM_COLUMN from the table DIMENSIONS.

